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A technique that allows for the site-specific incorporation of a large variety of 
unnatural amino acids into proteins has been developed. This methodology 
has been used to substitute amino acids with novel electronic, steric 
and spectroscopic properties into proteins, providing new insights into the 
mechanisms of protein stability, enzymatic catalysis and signal transduction. 
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Introduction 

Proteins are at the crossroads of  virtually every biologi- 
cal process, including signal transduction, catalysis, gene 
regulation and the immune response. Yet we know lit- 
tle about the mechanisms whereby these biopolymers, 
composed of 20 simple building blocks, carry out their 
remarkable functions. One important technique used to 
probe the forces that govern protein structure and fold- 
ing, biomolecular recognition and catalysis is site-di- 
rected mutagenesis [1]. This method makes it possible 
to substitute a specific amino acid in a protein with any 
of  the other 19 common amino acids [2]. However, in 
contrast to studies of small molecules, for which analogs 
with virtually any structural change can be synthesized, 
changes in protein structure are limited to the 20 amino 
acids. Ideally, we would like to be able to tailor the steric 
or electronic properties of an amino acid in a protein 
to address a specific structure-function question. Muta- 
tions might include modifying the acidity, nucleophilic- 
ity or hydrogen-bonding or hydrophobic properties of  
an amino acid side chain; altering or restricting the pro- 
tein backbone conformation; or introducing biophysical 
probes such as spin labels or isotopic labels site-specifi- 
cally into proteins. The ability to substitute such unnat- 
ural amino acids, beyond those specified by the genetic 
code, would greatly expand our ability to manipulate and 
study protein structure and function and may allow the 
generation of  new proteins with novel properties. 

A number of methods can be used to incorporate unnat- 
ural amino acids into proteins. Solid-phase peptide syn- 
thesis, particularly recent advances in the segment syn- 
thesis/condensation approach, has allowed the synthesis 
of  small proteins (up to 12 kDa) containing novel amino 
acids in milligram quantities [3-7]. Protein semi-synthe- 
sis, in which a synthetic peptide is ligated to a protein 
fragment to produce a full-length protein, has been used 
to incorporate unnatural amino acids into proteins [8,9]. 

This approach is complicated by the need to cleave the 
protein specifically at the peptide ligation site and by dif- 
ficulties in coupling the protein and peptide termini se- 
lectively. Chemical modification has also been used to 
introduce a variety of  unnatural side chains into pro- 
teins including cofactors, spin labels and oligonucleotides 
[10-15]. With this method, however, substitutions are 
largely restricted to simple derivatives of reactive amino 
acid side chains (e.g. lysine, cysteine, tyrosine) on the 
protein surface. Alternatively, biosynthetic methods that 
use chemically modified aminoacyl-tRNAs have been 
used to incorporate a number of  biophysical probes into 
proteins synthesized in vitro [16,17]. This approach is 
limited, though, because the mutations are restricted 
to derivatives of the natural amino acids; the modified 
amino acid is substituted at multiple sites; and both 
the modified and natural amino acids are incorporated 
at the site of  interest because of difficulties in removing 
endogenous aminoacyl-tRNA from the in vitro extract. 

Recently, a biosynthetic approach has been developed 
that, for the first time, allows the site-specific incor- 
poration of a large variety of unnatural amino acids 
into proteins [18,19°*,20]. Briefly, the codon for the 
amino acid of  interest is replaced with the stop codon 
UAG using standard oligonucleotide-directed mutagen- 
esis [21]. A suppressor tRNA that recognizes this codon 
is chemically acylated with the desired unnatural amino 
acid. Addition of the mutagenized gene or mKNA and 
the aminoacylated suppressor tRNA to an Escherichia coli 
or rabbit reticulocyte extract capable of  supporting pro- 
rein biosynthesis generates a mutant protein containing 
the unnatural amino acid at the desired position (Fig. 1) 
[18,19°°]. The details of  the methodology are discussed 
in [22°°]. In this article, we review applications in which 
the substitution of unnatural amino acids with novel 
electronic, steric and biophysical properties into proteins 
has provided new insights into the mechanisms of pro- 
tein stability, enzymatic catalysis and signal transduction. 

Abbreviations 
SNase--staphylococcal nuclease; T4L--T4 lysozyme. 
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Fig. 1. A method for the site-specific incorporation of unnatural 
amino acids. 

'Caged' proteins 

Low molecular weight caged substances, inactive precur- 
sor molecules that can be activated rapidly by photoly- 
sis, are useful in biochemical studies [26-28]. Unnatu- 
ral amino acid mutagenesis provides a unique approach 
to the construction of photo-caged proteins. For exam- 
pie, the active-site residue Asp20 in T4L was substituted 
with the unnatural amino acid ~-o-nitrobenzylaspartate 
5 [29]. Since Asp20 is essential for catalytic activity, the 
resulting protein was inactive. Removal of the protect- 
ing group by photolysis of  the intact, modified protein 
restored full catalytic activity. 

In a second example, a serine residue thought to be in- 
volved in the self-spicing reaction of  the protein vent 
DNA polymerase (Fig. 3; CJ Noren, personal commu- 
nication) was replaced by o-nitrobenzylserine 6. The 
resulting caged polynlerase did not undergo the self- 
splicing reaction, allowing the full-length protein to be 
isolated. Photolysis of  the unspliced protein resulted in 
loss of the nitrobenzyl protecting group and subsequent 
protein splicing. This result demonstrates unequivocally 
that protein splicing occurs at the post-translational level. 
The ability to construct caged proteins of this sort should 
allow a broad range of time resolved experiments rele- 
vant to catalytic mechanism, biomolecular recognition 
and protein folding. 

Biophysical probes 

Several amino acids that can serve as biophysical probes 
have been incorporated into proteins using unnatural 
amino acid nmtagenesis (Fig. 2). A novel spin-labeled 
amino acid 1, an unnatural fluorescent amino acid 2 
and an efficient cross-linking agent 3 were all intro- 
duced site-specifically at several external and internal 
positions in T4 lysozyme (T4L) with reasonable et~i- 
ciency [23°]. Both the electron spin resonance spec- 
trum of purified T4L containing the spin-label 1 and 
the fluorescence emission spectrum of purified T4L in 
which one of the tryptophans was replaced by 7-aza- 
tryptophan 2 were measured. With considerably more 
effort, a sufficient quantity of  purified T4L specifically 
labeled at Ala82 with [13C]Ala was produced to observe 
the proton resonances of the labeled residue selectively 
in both the native and denatured states using 13C-filtered 
NMP, [24°]. Finally, enough staphylococcal nuclease 
(SNase) containing the unnatural amino acid homoglu- 
tamate 4 at position Glu43 was obtained to determine 
the mutant protein's structure to 2.4A resolution using 
X-ray crystallography [25°[. The ability to incorporate 
probes capable of detecting local structure and dynamics 
into proteins site-specifically should allow more precise 
studies of protein folding and stability, conformational 
changes in proteins and the interaction of proteins with 
other proteins, small molecules and membranes. 

Protein stability 

Unnatural amino acid mutagenesis has been used to 
make well defined changes in proteins in the hope of  
gaining a more precise picture of  the forces that gov- 
ern protein stability [30,31]. In an examination of the 
importance of  packing interactions in the core of  a 
protein [32-36], replacements were made for Leu133, 
which lies along the edge of the largest cavity in the in- 
terior of T4L [37]. Previous attempts to stabilize T4L 
by increasing the packing density of the hydrophobic 
core via a Leu133-->Phe or Ala129--->Val mutation had 
been unsuccessful, as both mutations disrupt neighbor- 
ing residues [37]. Substitution by the unnatural amino 
acids S,S-2-amino-4-methylhexanoic acid 7 and S-2- 
amino-3-cyclopentylpropanoic acid 8, however, which 
were designed to fill the cavity with minimal strain, 
increased the thermal stability of  T4L by 0.6 kcal tool-1 
(1.9 °C) and 1.24kcalmol-I (4.3 °C), respectively [38°]. 
This result nicely demonstrates that amino acids that in- 
crease the bulk of  buried hydrophobic surface area with- 
out any concomitant introduction of strain can increase 
protein stability significantly. As there is tittle difference 
in surface area between these two unnatural amino acids 
(A surface area = 0.9 lal2), the difference in stability be- 
tween the two mutants likely reflects the fact that the 
cyclic amino acid 8 loses less conformational entropy 
upon folding than does the acyclic amino acid 7. This 
difference emphasizes the importance of side chain con- 
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Fig. 2. Examples of unnatural aminio acids successfully incorporated into proteins. 1 L-2-amino-3-thiomethyl-l-(1-oxyl-2,2,5,5-tetramethyl- 
3-pyrrolin-3-yl)-propanoic acid; 2 7-azatryptophan; 3 p-benzoylphenylalanine; 4 homoglutamate; 5 [~-o-nitrobenzylaspartate; 6 o-nitroben- 
zylserine; 7 S,S-2-amino-4-methylhexanoic acid; 8 S-2-amino-3-cyclopentylpropanoic acid; 9 lactic acid; 10 n-butylglycine; 11 t-butylglycine; 
12 S-4-nitro-2-aminobutyric acid; 13 pipecolic acid; 14 N-methylglycine; 15 threonine; 16 2,4-methanoproline. 

formational entropy, in addition to packing interactions, 
in determining protein stability. 
A series of mutations has also been made in T4L to ex- 
amine the contribution made by the polypeptide back- 
bone to protein stability [39°]. Although the strengths Of 
backbone hydrogen bonds have been difficult to deter- 
mine, they are not generally thought to contribute sig- 
nificantly to the stability of the folded state of a protein 
[30]. In order to test this notion the surface amino acid 
Ala82 in T4L was replaced with its isostere lactic acid 9. 
Ala82 is at a break between two helices, with the NH 
group and side chain exposed to water. The carbonyl of 
the preceding residue, Asn81, is hydrogen-bonded to the 
amide NH group of Lys85. The Ala82-~lactate mutation 
effectively substitutes a good hydrogen-bond acceptor, 
the amide carbonyl group, with a considerably weaker 
hydrogen bond acceptor, the ester carbonyl group [40]. 
Because both esters and amides occur mainly in the trans 

conformation [41], the 1.0kcalmo1-1 (3.7 °C) destabi- 
tization caused by this substitution indicates that back- 
bone amide hydrogen-bonding interactions do in fact 
help to stabilize proteins. 

The effect of incorporating [~-branched amino acids in 
protein a-helices has been examined by comparing the 
stability of mutant proteins containing alanine, n-butyl- 
glycine 10 or t-butylglycine 11 at two surface-exposed 
sites in the middle of two a-helices in T4L (VVV Cor- 
nish, PG Schultz, unpublished data). The natural [~- 
branched amino acids valine, isoleucine and threonine 
are thought to destabilize a-helices. These amino acids 
occur infrequently relative to amino acids such as leucine 
in a-helices in known protein structures, and they desta- 
bilize a-helical peptides and protein a-helices [42-48]. 
For example, when a series of linear and branched amino 
acids were incorporated into an a-helical peptide, the [~- 
branched amino acids proved to be destabilizing relative 
to the linear and T-branched amino acids [49]. In partic- 
ular, substitution of t-butylglycine for n-butylglycine or 
alanine destabilizes the peptide by about 0.9 kcal tool -1. 
The same substitution, however, either destabilizes T4L 
by 0.69 kcalmol-1 (2.5 °C) at site Set44 or stabilizes the 
protein by 0.27kcalmol-I (I.0°C) at site Asn68. This 
difference illustrates the difficulty of establishing simple 
rules about which factors stabilize or destabilize proteins 
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gested that general base catalysis contributes significantly 
to the catalytic efficiency of  this enzyme. Specifically, it is 
thought that Glu43 in SNase acts as a general base in ac- 
tivating a water molecule that attacks the phosphodiester 
backbone of  DNA. Glu43 is known to be important 
for catalysis because replacement by the natural amino 
acids aspartate and glutamine results in a significant loss 
in activity [55]. Surprisingly, substitution of  Glu43 with 
either homoglutamate 4 or the nitro analog S-4-nitro- 
2-aminobutyric acid 12, which is both isoelectronic and 
isosteric to glutamate but a much poorer base, yields mu- 
tant enzymes with kinetic constants markedly similar to 
those of  wild-type SNase under normal assay conditions 
(Fig. 4) [25"]. The catalytic efficiencies of  these mu- 
tants, coupled with their pH behavior and the crystal 
structure of  the homoglutamate 43 mutant, suggest that 
Glu43 may not be acting as a base, but may be struc- 
tural, serving as a bidendate hydrogen-bond acceptor to 
fix the conformation of  the neighboring loop. Indepen- 
dent studies by Gerlt and colleagues [56], in which the 
loop adjacent to Glu43 was deleted from SNase, have led 
to the same conclusion. 

Fig. 3. Photoactivated self-splicing of Vent DNA polymerase us- 
ing a caged serine analog. Analogous to exons and introns, an 
initial polypeptide is synthesized that contains both exteins and 
an intein; excision of the intein and ligation of the amino-termi- 
nal and carboxy-terminal exteins produces the mature, functional 
protein. 

given the influence of  context. In addition, the stabilities 
and simulated structures of  the t-butylglycine mutants 
provide information about the effects of  [3-branched side 
chains on or-helix stability in a protein. 

The results described in this section emphasize the dif- 
ficulty of  interpreting mutagenesis data when more than 
one property of  an amino acid is being altered at once. 
The ability to precisely alter the structure of  an amino 
acid should make it possible to obtain a better un- 
derstanding of the individual contributions made by 
hydrophobicity, packing, entropy and cavity formation 
to protein stability. We are currently extending these 
studies to hydrogen bonding and re-re and ~-ion inter- 
actions in protein interiors. 

E n z y m e  mechanism 

Unnatural amino acid mutagenesis is also being used to 
probe the catalytic mechanisms of  the enzymes SNase, 
aspartate aminotransferase, methionine aminopeptidase 
and ribonucleotide reductase. SNase accelerates the 
hydrolysis ofphosphodiester bonds in nucleic acids some 
1016-fold over the uncatalyzed rate. This enzyme has 
been the subject of  many structural, mechanistic and 
mutagenesis studies aimed at understanding how en- 
zymes can achieve such extraordinary rate enhancements 
[50-54]. On the basis of  these studies it has been sug- 

Cellular signal transduction 

Unnatural amino acid mutagenesis has been used to 
probe the function of  Ras p21 in cellular signal trans- 
duction pathways. Mammalian proteins encoded by the 
ras genes are thought to act as regulators of  various sig- 
nal transduction processes involved in cell growth and 
differentiation [57-59]. The chemical basis for signal 
regulation involves cycling of  the protein between the 
inactive and the active GTP-bound states. Point muta- 
tions that decrease the intrinsic GTPase activity of  tLas 
and the GTPase activity stimulated by the GTPase-acti- 
vating protein are associated with approximately 30% of  
human cancers [58,60]. In order to gain a better under- 
standing of  the molecular basis by which mutations in 
tLas lead to switch inactivation, we substituted residues 
in loop L4 (the switch II region), loop L2 (the switch I 
region) and loop L1 (the phosphate binding loop) with 
a series of  unnatural amino acids [6t°,62",63]. 

Mutations at Gly12 of  Ras result in impaired intrin- 
sic GTPase activity and are commonly associated with 
oncogenic activation [58,64]. Gly12 occurs in a highly 
conserved type II [3-turn, a phosphate-binding loop 
found in many nucleotide-binding proteins [65,66]. Mu-  
tation o f  Gly12 to any common amino acid other than 
proline results in diminished GTPase activity [64]. To 
gain a better understanding of  the effect of  Gly12 mu- 
tants in switch function, we inserted a number o f  un- 
natural amino acids at this site, including lactic acid 9, 
pipecolic acid 13 and N-methylglycine 14 [62"]. The 
pipecohc acid mutant, which was expected to have 
a much more negative @ value than Gly12, retained 
GTPase activity similar to that of wild-type Ras. The 
N-methylglycine mutant also had wild-type GTPase ac- 
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