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This review summarizes recent applications of chemical tags in

conjunction with advanced bio-imaging techniques including

single-molecule fluorescence, spatiotemporally resolved

ensemble microscopy techniques, and imaging modalities

beyond fluorescence. We aim to illustrate the unique

advantages of chemical tags in facilitating contemporary

microscopy to address biological problems that are difficult or

near impossible to approach otherwise. We hope our review

will inspire more innovative applications enabled by the

mingling of these two growing fields.
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Introduction
Advances in microscopy have tremendously expanded

our knowledge of biological processes at the microscopic

level. The achievements therein are the result of close

collaborations between physicists/engineers who build

the imaging instruments and chemists/biochemists who

design the corresponding probe molecules. One classic

example representing this trend is the use of GFP to

visualize specific proteins within living organisms by

fluorescence microscopy [1]. Recent developments in

more advanced imaging schemes (e.g. single-molecule

fluorescence imaging, fluorescence lifetime imaging, tri-

plet-state lifetime imaging, luminescence imaging,

vibrational absorption imaging or magnetic resonance

imaging) have emerged as next-generation tools to unra-

vel complex biological processes in space and time from

particular vantage points. In contrast to genetically encod-

able fluorescent proteins, the probes for these advanced

imaging modalities, however, generally lack biocompati-

ble targeting strategies to specific biomolecules. Since

proteins are the most diversified functional biomolecules,

protein-specific targeting capability, if achievable, will

tremendously enrich the applications of corresponding

imaging methods.
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Chemical tags have emerged as a new generation protein

labeling strategy compatible with live cells. Chemical tags

are composed of a defined polypeptide sequence that is

fused to a protein of interest, and which can be sub-

sequently modified with a chemical reagent, such as an

appropriately derivatized fluorescent dye. The first chemi-

cal tag, FlAsH, was invented in 1998 by the Tsien lab [2].

Since then, several commonly used chemical tags have

been developed, including self-labeling FlAsH/ReAsH

[3], SNAP/CLIP tag [4,5], TMP-tag [6], HaloTag [7], b-

lactamase tag [8q] and enzyme-mediated labeling methods

based on lipoic acid ligase [9]. Methodologically, chemists

have used a variety of strategies to engineer and optimize

chemical tags, including directed evolution [10], proxi-

mity-induced reactivity [11] and pro-drug loading [9,12].

With efforts from many research groups, chemical tags

have reached a relatively mature stage, and the question

has shifted from ‘How to label’ to ‘What to label with’, as

discussed in several recent review articles [13��,14��,15]. In

our opinion, the most powerful feature of chemical tags,

compared to the classic fluorescent proteins, is the ren-

dered chemical diversity in the label/reporter moiety. We

discuss in this present review how this rendered chemical

diversity perfectly matches this feature perfectly matches

the demand of protein-specific imaging for a variety of

advanced imaging methods.

In this review, we discuss the selected works that use

chemical tags in combination with bio-imaging schemes

beyond traditional fluorescence, such as wide-field or

confocal microscopy. Reminiscent to the revolutionizing

role of GFP to fluorescence microscopy, we highlight the

bridging role of chemical tags that renders targeted

protein specificity in modern advanced microscopies.

And we also demonstrate the advantage of chemical tags

in obtaining new and valuable information that would be

difficult to collect otherwise (Table 1).

Chemical tag-enabled imaging techniques
based on single-molecule fluorescence
Single-molecule fluorescence imaging techniques have

brought considerable excitement to biological research.

These techniques enable characterization of biomolecules

on the individual level, providing complementary data to

that obtained from ensemble experiments. Because it only

detects one molecule, the single-molecule fluorescence

assay is technically demanding and requires high-photon-

output fluorophores. A typical fluorescent protein molecule

can emit roughly 4 � 105 photons before photobleaching

[16], while the best organic dye molecules have a typical

photon output on the order of 106 to 108 [17]. Therefore,

dye molecules conjugated with chemical tags provide high
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Table 1

Implementations of chemical tags in advanced microscopy discussed in this review

Imaging technique Detected signal Representative tag/probe Significance Ref.

PALM; STORM Precise location of single-

molecule fluorophores

Halo/azido DCDHF; TMP/Atto655 Reconstructed super-

resolution images

[21,23,

26–28,29�]

Single-molecule tracking Precise single-molecule

trajectories

SNAP/Dy547; Halo/Alexa488 Dynamic information of

target protein

[30–32]

CosMos Colocalization of multi-

color single-molecule

fluorescence

TMP/Cy5; SNAP/DY549 Mechanistic analysis of

macromolecular machines

[33��]

STED Peripherally depleted

fluorescence

Halo/Atto655; SNAP/SiR Super-resolution imaging [29�,37–40]

FLIM Fluorescence lifetime TMP/Cy3 Indicative of protein-specific

micro-environment

[42�]

Triplet imaging Triplet-state lifetime SNAP/TMR Indicative of cellular oxygen

consumption

[43]

TR-FRET/LRET Time-resolved luminescence

resonance energy transfer

SNAP/K (europium cryptate);

TMP/Lumi4 (terbium chelate)

Background-free detection

of FRET for protein–protein

interaction

[44,45]

OLID-FRET Modulated donor

fluorescence

due to acceptor

photoswitching

SNAP/NitroBIPS; SNAP/

Cy3–NISO

Sensitive detection of FRET [48,49]

EM Electron beam FlAsH–ReAsH Protein-specific EM contrast [3]

Infrared near-field

microscopy

Infrared absorption ACP/Alexa 488 Photobleaching-free [51]

PET Gamma ray from positron

emission

Halo/64Cu NOTA In Vivo imaging of whole

animal

[52]

MRI Nuclear magnetic resonance Halo/2CHTGd

(gadolinium chelate)

Increased MRI sensitivity

with protein-specificity

[53�]
photon budgets, more precise localization, longer

observation time and a higher signal-to-noise ratio. These

merits make chemical tags excellent tools for the the study

of proteins by single-molecule fluorescence.

Single-molecule fluorescence detection enables the recon-

struction of sub-wavelength resolution images by two

fundamentally similar approaches: PALM (photoactiva-

tion localization microscopy) [18,19] and STORM (sto-

chastic optical reconstruction microscopy) (Figure 1a) [20].

In PALM, target proteins are labeled with photoactivatable

fluorophores, which are then photo-activated sparsely and

repeatedly, allowing the record of a collection of single-

molecule resolved images. The fluorophores are finally

localized to a precise location using software and the

super-resolution image is generated. Compared to the

photoactivatable fluorescent proteins, chemical tags allow

more accurate localization due to the larger number of

detected photons. From a chemical point of view, chemical

tag-based labeling methods provide diverse photo-chemi-

cal strategies toward dye photoactivation. In 2010, the

Moerner group demonstrated the first example of live

bacteria PALM imaging of a labeled target protein using

the chemical tag, HaloTag/azido DCDHF conjugate [21].

Azido DCDHF has an extraordinary high quantum yield of

photoactivation under UV exposure [22]. Therefore, a low-

intensity UV light source can be used, reducing the UV-

induced damage to living cells. More recently, the Johns-

son group utilized a caged rhodamine derivative as an
Current Opinion in Chemical Biology 2013, 17:637–643 
alternative probe for PALM imaging in conjunction with

the SNAP-tag [23]. Similar to PALM, STORM takes

advantage of the reversible photoswitching of fluorescent

dyes. It has recently been shown that photoswitching is a

rather universal process for a wide spectrum of organic

dyes, especially rhodamines, cyanines and oxazines

[24,25]. Live cell dSTORM (direct STORM) imaging of

labeled intracellular protein H2B was demonstrated using

a TMP–Atto655 conjugate, taking advantage of the photo-

switching behavior observed in the presence of cellular

oxygen and reductants [26]. Several alternative chemical

tag/dye combinations have been successfully applied to

live cell dSTORM [27,28], with a noteworthy example

being the newly developed SNAP-tag/NIR fluorophore

silicon–rhodamine [29�]. With the growing availability of

PALM/STORM microscope and chemical tag-dye conju-

gates, we expect super-resolution imaging to become a

routine protocol for live cell studies in the near future.

The high-photon output of synthetic fluorophores could

further enable prolonged sub-resolution tracking of single

proteins with high temporal-resolution inside live cells

(Figure 1b). Appelhans et al. observed single-molecule

diffusion behavior of mitochondrial proteins using Halo-

Tag-rhodamine labels [30]. Benke et al. later reported

dual-color single-molecule tracking of cellular proteins

using multiple chemical tags [31]. In pursuit of brighter

and more photostable material, Liu et al. reported a

targeting strategy of quantum dots that combines both
www.sciencedirect.com
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Imaging strategies based on single-molecule fluorescence of labeled target proteins. (a) PALM/STORM image is reconstructed based on precise

localization of a stack of images rendered by stochastic photoactivation/photoswitching on single-molecule level. (b) Single-molecule tracking is

indicative of spatial–temporal dynamics of different proteins in live cell. (c) Colocalization of multi-color single-molecule fluorescence reveals kinetic

information of complex biochemical machineries.
the lipoic acid ligase and the HaloTag. This stepwise

strategy enables the tracking of membrane targets at the

single-molecule level and is considered a promising new

method for tracking membrane-bound receptors in

neurons [32].

The high photo-stability of organic dyes allows the obser-

vation of a single protein molecule over an extended period

of time. The biochemical interactions within this time

period can be seen under the same microscope if the

interaction partners are labeled with other fluorescent

markers with different colors, characterized as a colocaliza-

tion event of multi-color single-molecule fluorescence

(Figure 1c). This method, dubbed CoSMoS (colocalization

single-molecule spectroscopy), is especially useful for the

study of protein complexes which are difficult to recon-

stitute in vitro, as each component of the complex could be

fluorescently labeled directly in cell extracts using chemi-

cal tags. Hoskins et al. have deciphered the dynamic

assembly process of spliceosomes, which are mega-Dalton

protein–RNA complexes for mRNA maturation, using
www.sciencedirect.com 
CosMos with the TMP-tag and the SNAP-tag as labeling

methods for individual protein components. This work

highlights the orthogonality between different chemical

tags, enabling their simultaneous use for multi-color ima-

ging [33��]. In addition to probing biochemical inter-

actions, single-molecule approaches are also useful for

detecting low efficiency protein modifications due to its

superior detection sensitivity. For example, Yang and

Zhang demonstrated single-molecule measurements of

simultaneous SUMOylation (small ubiquitin-like modi-

fier) using the SNAP/CLIP tags, with a sensitivity �100

fold greater than immunoblotting assays [34]. These

examples are pioneering yet promising attempts to use

chemical tags and single-molecule imaging to decipher

protein functions and modifications.

Spatiotemporally resolved ensemble
microscopy techniques
STED microscopy is the first demonstrated super-resol-

ution technique for far-field fluorescence imaging. It uses

a high-power doughnut-shaped stimulated emission
Current Opinion in Chemical Biology 2013, 17:637–643
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Figure 2
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Principles of selected spatiotemporally resolved imaging techniques. (a) Energy diagram of a typical fluorophore. (b) HaloTag–Atto655 is used in STED

microscopy to break the diffraction limit. Resolution of STED microscopy is a function of STED beam intensity. (c) TMP–Cy3 is used with FLIM

microscopy to sense local micro-environment in live cells. Cy3 S1 state lifetime is a function of local viscosity. (d) SNAP–TMR is able to sense oxygen

concentration using triplet imaging microscopy. TMR T1 state lifetime is a function of local oxygen concentration.
beam to deplete the peripheral fluorescence of the focal

point, therefore narrows the effective point spread func-

tion to improve spatial resolution [35,36]. In principle,

stimulated emission depletion can be applied to all fluor-

ophores (Figure 2a,b), but photostable dyes are preferable

in practice since a high-intensity depletion beam is used.

To date, live cell STED imaging has been demonstrated

with several chemical tag/fluorophore conjugates [29�,37–
39]. Multi-color STED imaging with orthogonal chemical

tags was also demonstrated [40].

Besides implementations in super-resolution imaging,

chemical tags have also advanced time-resolved fluor-

escence techniques. Fluorescence lifetime imaging

microscopy (FLIM) is a powerful time-resolved fluor-

escence technique that characterizes the singlet excited

state of fluorophores [41]. The fluorescence lifetime of

the singlet excited state, defined as the time delay be-

tween the absorption of a photon and the emission event,

is highly sensitive to the surrounding micro-environ-

ments. It can be measured in frequency-domain by mod-

ulating the excitation source sinusoidally at high

frequency (>10 MHz) and recording the phase delay of

the fluorescence signal. Gatzogiannis et al. have devel-

oped a protein micro-environment sensor based on fluor-

escence lifetime measurements of a TMP–Cy3 probe.

Cy3 has a prolonged fluorescence lifetime in a high

viscosity environment due to the lowered efficiency of

its non-radiative isomerization pathway (Figure 2a,c).

Using TMP-tag, Cy3 is targeted to the nucleus and cell
Current Opinion in Chemical Biology 2013, 17:637–643 
membrane, and heterogeneity inside the cell nucleus is

visualized using FLIM [42�]. This work highlights the

greater environmental accessibility of chemical tag-

labeled organic dyes over barreled fluorescent proteins

as biophysical probes. Using varying pulsed excitation,

the triplet-state lifetime of fluorophores can also be

measured by utilizing the fact that triplet-state build-

up is a function of excitation pulse width. Geissbuehler

et al. developed a wide-field imaging-fitting protocol to

measure the triplet-state lifetime of tetramethylrhoda-

mine (TMR) conjugated to a cytosol protein with SNAP-

tag. Because oxygen induces triplet-state lifetime

changes via an energy transfer process (Figure 2a,d), this

approach enables fast mapping of cellular oxygen con-

centration during muscle cell contraction [43].

Time-resolved fluorescence is especially useful in

FRET-based methods to study protein–protein inter-

actions (Figure 3a). Time-resolved FRET relies on a

lanthanide-based donor which has a long-lived (on the

order of ms) luminescence. Therefore, donor and accep-

tor emissions can be collected following pulsed exci-

tations, minimizing the detection of cross-excitation of

the acceptor and autofluorescence (Figure 3b). Maurel

et al. designed a donor-acceptor pair, europium cryptate-

d2, to GPCRs using SNAP-tag to study their interaction

and oligomerization on the cell surface [44]. Rajapakse

et al. have reported a TMP–Lumi4 probe for studying

cytosolic protein–protein interaction by luminescence

resonance energy transfer (LRET) between a terbium
www.sciencedirect.com
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Figure 3
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Improving FRET using novel detection methods in combination with labeled fluorophores. (a) Traditional FRET suffers from high background resulting

from autofluorescence as well as spectrum bleed-through. (b) Using long-lived lanthanide probes as donors, emission can be detected shortly after

the removal of the excitation light, minimizing the autofluorescence and cross-excitation. (c) Using OLID-FRET, the absorption spectrum of

photoswitchable acceptor is directly modulated with light and FRET signal is detected from the modulated donor fluorescence.
complex and GFP [45]. Recently, TMP-lanthanide

probes with improved cell permeability were reported

[46]. With higher signal-to-noise ratio, time-resolved

FRET is gaining increasing attention as a promising

detection strategy of protein–protein interactions [47].

Conceptually different from time-resolved FRET, OLID

(optical lock-in detection)-FRET microscopy was devel-

oped as an alternative method to improve the detection

accuracy of the FRET signal. In OLID-FRET, a photo-

switchable fluorophore that can be reversibly photo-

switched by light is used as the FRET acceptor. Donor

fluorescence with and without sensitizing the acceptor was

measured repeatedly in the same cell, allowing unambigu-

ous resolution of the FRET signal (Figure 3c). Mao et al.
reported a live cell OLID-FRET system using GFP as the

donor and a photoswitchable NitroBIPS, conjugated to

GFP via SNAP-tag, as the acceptor. This method enhances

the sensitivity of FRET down to 1% FRET efficiency [48].

Recently Cy3/NISO was demonstrated to be a suitable

OLID-FRET pair and can be used to label membrane

proteins via the SNAP-tag [49].

Beyond fluorescence contrast
Although fluorescence is considered one of the most

sensitive optical detection methods, it has several draw-

backs including limited optical resolution, poor penetra-

tion depth and inevitable fluorophore photobleaching.

Development of non-fluorescence-based imaging

methods could complement fluorescence imaging in

these regards. However, often times there are few geneti-

cally encodable protein tags for these non-fluorescence

methods. We aim to demonstrate the growing interest of
www.sciencedirect.com 
using chemical tags in non-fluorescence-based imaging

methods with targeted protein-specificity.

In pursuit of superior resolution beyond optical micro-

scopy, electron microscopy (EM) was developed based on

the fact that electron beams have orders of magnitude

shorter wavelengths compared to that of visible light. By

using the electron beam as the illumination source, EM

can resolve sub-cellular structures down to 1 nm. The

contrast of EM is usually rendered by staining with

osmium tetroxide, which intrinsically lacks protein speci-

ficity. Gaietta et al. implemented ReAsH as a contrast

reagent for electron microscopy by taking advantage of its

photo-catalytic effect of diaminobenzidine oxidation

toward an osmophilic polymeric product. Cooperation

of fluorescence and electron microscopy of FlAsH/ReAsH

labeled connexin43 revealed the transportation and

incorporation processes of connexin43 into existing gap

junctions [3]. This work is considered the benchmark for

using chemical tags to achieve a resolution beyond optical

microscopy.

As a non-bleaching alternative to traditional fluorescence

approaches, infrared-based microscopy is being explored

for potential imaging applications. Infrared (IR) absorp-

tion does not subject molecules to irreversible damage.

The IR bands of biomolecules, however, are often super-

imposed with each other and hard to distinguish. Gener-

osi et al. observed that Alexa488 molecules had a specific

IR absorption band which minimally overlapped with

cellular IR absorption. Alexa488 was labeled to glutamate

receptors on neurons with the ACP-tag [50] and live cell

images were recorded using infrared scanning near-field
Current Opinion in Chemical Biology 2013, 17:637–643
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microscopy [51]. This work presents an interesting appli-

cation of chemical tags towards photobleaching-free non-

fluorescence optical imaging.

To achieve deeper penetration for live animal imaging,

positron emission tomography (PET) is one of the most

commonly used techniques. In PET, isotope probes are

localized based on the emitted g-rays, which are gener-

ated from the annihilation event between a positron and

an electron. Hong et al. recently reported a Halo-

Tag–64Cu NOTA probe for PET imaging in live animals.

Tumor cells expressing HaloTag protein could be

detected in live mice using injected 64Cu NOTA probe

[52]. Another widely used method for live animal ima-

ging is magnetic resonance imaging (MRI), which uses

penetrative magnetic field to magnetize and probe

selected atomic nuclei and reconstruct images. Recently,

a protein-targetable MRI contrast reagent based on

HaloTag–gadolinium chelate (2CHTGd) was developed

and characterized in vitro [53�]. While further in vivo
applications of the chemical tag-targeted MRI probe are

still being evaluated, this work, along with the PET

imaging approach discussed above, exemplify the poten-

tial of chemical tags in promoting protein-specific ima-

ging in live animals.

Concluding Remarks
By introducing diverse reporting moieties specifically to

their target proteins, chemical tags have unforeseeable

potential in promoting novel techniques towards various

biological problems. Stimulating to each other, the co-

evolution of chemical tagging and imaging strategies is

becoming a fruitful source of innovation for the toolbox of

biological research.
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